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Abstract—Operations involving safe interactions in unstruc-
tured environments require robots with adapting behaviors.
Compliant manipulators are a promising technology to achieve
this goal. Despite that, some classical control problems such as
following a trajectory are still open. A typical solution is to
compensate the system dynamics with feedback loops. However,
this solution increases the effective robot stiffness and jeopardizes
the safety property provided by the compliant design. On the
other hand, purely feedforward approaches can achieve good
tracking performance while preserving the robot intrinsic com-
pliance. However, a feedforward control framework for robots
with passive elastic joints is still missing. This article presents an
iterative learning control algorithm for purely feedforward tra-
jectory tracking for compliant underactuated arms. Each arm is
composed of active elastic joints and a generic number of passive
ones connected through rigid links. We prove the convergence of
the iterative method, also in the presence of uncertainties and
bounded disturbances. Different output functions are analyzed
providing conditions, based on the system inertial properties that
ensure the algorithm applicability. Additionally, an automatic
selection of the learning gain is proposed. Finally, we extensively
validate the theoretical results with simulations and experiments.

Index Terms—Robotics, Iterative Learning Control (ILC),
flexible structures.

I. INTRODUCTION

Recent years have seen the growing interest in a novel
generation of robots, the so-called soft robots [[1]. These
systems present lumped elastic elements at the joints [2f],
flexible elements [3]], or continuum soft bodies [4]. We here
focus on underactuated compliant arms (Fig. [T), which are
soft robots with elastic elements lumped at the joints, and a
limited number of actuated joints, leading to a flexible be-
havior. The elastic elements in soft robots enable a compliant
behavior, which is a crucial feature to safely and resiliently
interact with unstructured environments, with human beings,
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Fig. 1. An underactuated compliant arm is a robot composed of several joints,
of which only a few are actuated. The compliance is conferred to the arm
by elastic elements lumped at the joints (both actuated and unactuated). It is
worth noting that there is no limit on the number of unactuated joints. As an
example, the figure depicts a robot with only two actuated elastic joints (red
cylinders) and a generic number of passive ones (white cylinders).

and other robots. Additionally, they present properties such as
adaptability [5]], energy efficiency [6], shock absorption [7],
which allow outperforming traditional rigid robots in novel
applications such as agri-food [8]], healthcare [9], service [10],
search & rescue [11], etc.

With the advent of soft robotics, the control problem rad-
ically changed, and several old challenges needed to be re-
opened, re-analyzed, and solved. Trajectory tracking is one of
these classical problems. Historically, robot control was based
on the stiffer the better paradigm [12] because robots used to
work isolated in cages solving pick and place tasks. Indeed,
stiff behavior allows maximizing the robot accuracy [13]].
Therefore, controllers mainly incorporated compensation of
the robot dynamics [14]], and a high-gain feedback-loop [15].

Nowadays, to achieve adaptability and interaction safety,
controllers aim to fully exploit the softness of the robot
structure. This idea has been implemented into a model-based
paradigm [3]], [16]-[22] and a learning-based algorithm [23]]—
[26]. The performance of the former is intrinsically linked
to the model accuracy. This may lead to a lack of reliability
because the dynamic of soft robots is typically hard-to-model
[27]. For this reason, model-based controllers usually present
a feedback loop to increase robustness to model uncertainties.
However, using a feedback loop will stiffen up the robot
behavior [23]. Conversely, feedforward approaches preserve
the natural compliance of the robot. For this reason, learning-
based methods are a proper solution. Indeed, they mainly
rely on feedforward components, and they do not require an
accurate description of the robot model. However, machine
learning approaches, e.g., Reinforcement Learning [25]], are
time-consuming, and they do not exploit the system properties,



e.g., inertial coupling [28] or stability [29], [30]. On the other
hand, the Iterative Learning Control (ILC) [31] framework
consists of an almost purely feedforward iterative control
approach that can lead to good tracking performance without
requiring an accurate description of the model. ILC has been
already applied to robots with elasticity lumped at the joints,
and it has been proved to avoid any alteration of the robot
compliant dynamics [23]], [32]]. In [23]], ILC deals with robots
whose joints are all independently actuated. This control
framework is generalized w.r.t. the desired stiffness profile in
[24]. However, controlling robots with a generic number of
unactuated elastic joints is still an open problem.

In our previous work [33]], we proposed an ILC framework
that targets the trajectory tracking problem for compliant
arms composed of two elastic joints, where only the first
is actuated. The main limitations of [33] are that only one
unactuated elastic joint is present, only one output function
is employed, and only Single-Input Single-Output (SISO)
systems are analyzed.

The contributions of the paper are:

1) we propose a pure feedforward ILC law for trajectory
tracking for compliant underactuated arms.

a) The proposed algorithm generalizes [23[], [24], [33[],
[34] managing a generic number of actuated and un-
actuated elastic joints. This includes also the case of a
number of unactuated joints that is even greater than
the number of actuated ones (Fig.[l). Note also that this
algorithm can be applied to Multiple-Input Multiple-
Output (MIMO) systems too.

b) We quantify the robustness of the convergence of
the proposed method in the case of continuous time
nonlinear systems with a fixed generic relative degree
affected by nonrepetitive disturbance. A similar prob-
lem is studied in [35]—[37]] for discrete-time systems
without any relative degree dependence, in [38] the
underactuated continuous-time nonlinear system has
a relative degree equal to one and saturated iterative
control law is employed, and in [39] the nonlinear
system is not affected by disturbances. Moreover, these
articles do not present any experimental validation.

2) We analyze different choices of the output functions. The
main challenge, to guarantee the learning converge, is
given by the relative degree dependence [40|]. Hence:

a) we design conditions to ensure the applicability of
the learning method, generalizing the Strong Inertial
Coupling (SIC) condition [28].

b) We develop two automatic procedures to select the
learning gains while guaranteeing the convergence.

3) We extensively validate the effectiveness of the pro-
posed method through different tests. First, we perform
a simulative comparison between the proposed approach
and State-of-the-Art (SoA) controllers on a 2 degree of
freedoms (DOFs) robot. Second, we validate the proposed
method in both simulations and on real hardware. We
simulate two systems: a 10 DOFs SISO system, and a
6 DOFs MIMO arm. The former validates the tracking
performance of a chain with 9 passive joints and the latter

operates in a tridimensional workspace. Then, we com-
pare the results of simulations and experiments for a 2
DOFs chain, a 3 DOFs arm, and a 4 DOFs planar MIMO
robot, varying output functions, disturbances, payloads,
desired trajectories, and the stiffness values of the joints.

This paper is organized as follows. Sec. introduces
the underactuated compliant arm model, and it defines the
control problem. In Sec. the design of the ILC is defined.
Sec. provides sufficient conditions to guarantee the
convergence of the learning based on the inertial coupling
property. Sec. derives conditions to ensure the strong
inertial coupling considering different output functions, and
Sec. proposes two automatic procedures to compute
the control gains. Sec. studies the applicability of the
learning method, and Sec. validates its effectiveness. The
results are discussed in Sec. Finally, Sec reports the
conclusions. All the proofs are reported in the Appendix.

II. PROBLEM STATEMENT

Notation: Let 1yy, =[1,1,---, 1] € R [, € R™" be

the identity matrix, and 0,, € R"*" be a zero matrix. Let f,g:
x € R" — R" be two vector fields, Lyg(x) stands for the Lie
derivative of g(x) along f(x), i.e., Lrg(x) = %f(x). For any
matrix A € R"*”, we denote with A;  its (i, j)—th element. For
any vector v € R”, for any matrix A € R"*"™ we denote with
[|v|| and ||A]| their infinity norm. Let A be a positive constant,
for any vector v € R", we denote with ||v|[; its A—norm, i.e.,
|[vll,, £ sup, {||v]|e™*'}. Finally, let y(:) :# € R — R" be a
vector function, we denote with y()(¢) its i—th time derivative.
We refer to the model of an n-DOFs compliant robot having

a combination of actuated and unactuated elastic joints, i.e.,
M(q)§+C(q,4)4+G(q) +Dg+Kqg=5ST+Tex, (1)

where ¢,q,4 € R" are the joint position, velocity, and accel-
eration vectors, respectively. M(g) € R"*" is the inertia robot
matrix, C(g,q) € R™" is the Coriolis matrix, G(q) € R" is the
gravitational term, D € R"" and K € R"*" are the damping
and stiffness matrices, respectively. We indicate with 7 € R"
the control input, where n, indicates the number of active
joints. The matrix § € R" is the underactuation map, and
it is such that rank{S} = n,. The vector Tex; € R” denotes the
external disturbances (if present).

We study an iterative procedure over a finite time interval
[0,7]. Let j=0,1,--- be the iteration index, we follow the
classic affine state-space form representation by defining the
state vector X; = [q] , ¢ | " € R?" at the j—th iteration. Thus,
the system (I)) can be written as

{ Xj(t) = f(xj(1) +8(xj(t))u;(t) +v;i(t) 2)
yj(t) = h(x;(t)) +w;(t), 3)
where y; € R™ is the output, A(-) : R* x [0,#f] — R™ is the
output function, while u; € R™ is the control action, i.e., 7.
F() :R? x [0,4] — R?", and g(-) : R?" x [0, 1] — R*"™"™ are
the drift and control vector field, respectively, i.e.,

flxi) = {M‘l(qf)jN(qj,qj)]’ 80y) = {M%;;)S]’ @



with N(q;.4;) = C(q;.4;)4; + G(g;) + Kq; +Dq;.

The nonrepetitive disturbances are v;(t) : [0,#] — R?",
which is a more general form of M~!(q;)Tex ((#), and w;(z) :
0,7] — R". Moreover, the initial condition x;(0) € R?"
presents nonrepetitive bounded deviation from an iteration-
constant value ¥(0) € R?" such that x;(0) =x(0)+1;, [; € R*".

We assume that
Al) the system (@)-@) is square, i.e., ny = n, [39).

A2) The system (@)-(3) has a (vector) relative degree (see,
e.g. [40)) ry =[r1, ..., rn,] "Vt € [0,15], with rj = --- =
I, = r > 0, for almost all x € R?".

It is instrumental for the description of the method to recall the

decoupling matrix E(x) € R™*™ je., E;y(x) = Lo, L'y (x),

with Vi k € [1,n,] (see, e.g., [40]).

A3) f(x), g(x), h(x), Lyh(x), s =1,---,r, and E(x) are
globally Lipschitz with constants fy, go, ho, Ps, and
n € R, respectively.

Remark 1. Assumptions [AIJA3] are commonly used in the
ILC framework [33]], [39]. In particular, assumption [A1] pre-
vents dimensional ambiguity while inverting the decoupling
matrices. Note that assumption [A1] does not limit the choice
of the output function but only its dimension. This means that
both actuated and unactuated variables can be included in
(@). Assumption [A2] allows a dynamic coupling between the
output time derivatives and the control inputs. The Lipschitz
assumption, i.e. [A3] implies that the functions in 2)-() and
their Lie derivatives are continuous in X.

Given the desired output trajectory yq(¢) : [0,4] — R™, we
introduce the definition of realizable reference [38]], [39].

Definition 1. The desired trajectory y4(t) : [0,ts] — R is
said realizable when there exists the unique desired control
action ug € R"™ and a desired state xq € R* such that
Xa(t) = f(xa(r)) + 8(xa(1))ua(t) and ya = h(xa(1)).

Given the desired output, which is feasible, continuous, and
differentiable for, at least, r times, Vr € [0,#], the goal of this
work is to design a control input for a system affected by
disturbances in the form (2)-(3) under assumptions [AT{A3]
able to follow the desired trajectory yq with a bounded error
in A—norm. Additionally, to preserve the intrinsic compliance
of the system, the control action must be feedforward [32].

III. SOLUTION

In this section, the problem defined in Sec. [ll)is tackled. We
design an ILC controller [31]], [39], we prove its convergence
and study its robustness to disturbances and uncertainties (The-
orem I). To ensure the method convergence, we investigate the
system inertial coupling property for different choices of the
output function (Proposition [I). Corollary [2] and 3] present two
automatic procedures to select the learning gains. Finally, we
studies the method applicability w.r.t. the robot design.

A. Control Design

Through trails of the same task, the ILC learns a feedfor-
ward action that is able to drive the robot following the desired
trajectory yq, while preserving the system elasticity.

Vou(t) Iteration j — 1,

Iteration J
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u(t) wy(t)

! |
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Fig. 2. Scheme of a single iteration of the proposed ILC approach. The “On-
line” green box shows the trial execution. The “Off-line” blue box shows the
computation of the control action for the next iteration.

Recalling the system (2)-(3) and the assumptions [ATHA3]
we define the pure feedforward control law as

ujrr (1) = uj(t) +Tj(t) e;(t) , (5)

where I';(r) € R™*™ is a learning gain which is both time
and iteration variant, and the error is defined as

r

Te(t) & ;)Ts (Lyh(xa) — Lyh(x)))

+Yr(E(xd)Md_E(Xj)uj)— ZTSWE_S) (6)
s=0

— (). 50) + Y (E(ra)ua — E(ep)ug) — Y Tyl
s=0

where E(x) € R™*™ jis the decoupling matrix, and Y, €
R"™*" Y > 0,s=0,...,r are the control gains. The controller
(3) requires an initial guess ug, which can be freely chosen.
Fig. 2] shows the block-diagram of the proposed approach.

Def. |I| provides the existence of ug and x4, which are re-
quired to theoretically prove the convergence of (3) (Theorem
|ID. However, the knowledge of u4 and x4 is not required, and
from a practical point of view, the controller only needs the
output and its time derivatives, i.e., @

In the following Theorem, we prove the convergence of the
proposed iterative controller (3).

Theorem 1. Let us consider the system 2)-@) under assump-
tions the control law (), a desired output y4(t) € R™,
and the error definition (6). Let us suppose that the nonrepet-
itive disturbances are bounded, i.e., sup; maxt{||vj(t)||} <
by < +eo, sup;max, {||w;(t)||} < by < +eo, and let X(0) =
x4(0) be such that x;(0) = x4(0) +1;, with sup; {||1;|| } < b1 <
+oo. Moreover, let us suppose that w;(t) can be differentiated
r times with bounded derivatives, i.e., sup; max{| |w§»3) 0]} <
bws, where bys with s=1,---,r.
If the learning gain T'j(t) € R"™*" satisfies

||l —Ti(O)YE))|| <p<1,Vr€[0,],j=0,1,..., (D

where E(x) € R"™*™ s the decoupling matrix, and Y, € R">*"



is a control gain, then

]_Erﬂwuud(t)—uj(t)HA — by (8)
jgl}rlexd(l‘)—xj(l‘)Hl — by 9)
lim ||"e;(1)[|, = be , (10)

e
where by, bx, and b are finite positive constants dependent
on by, by, by, and by for s=1,---r.

Proof. See the Appendix. [

Remark 2. The presence of bounded disturbances in Theorem
allows to derive robust result on the convergence, i.e., (10).
Note that, since the () is purely feedforward, we can differ-
entiate the disturbances wj(t) off-line after filtering gaining
bounded derivatives.

Corollary 1. Suppose that all the hypotheses of Theorem|I|are
verified with 1; =0, v;(t) =0, and w;(t) = 0,Vt € [0,%],V. If
the learning gain T'j(t) € R™*" satisfies ({I)), then the Thesis
of Theorem [1] is still valid with b, = by = be = 0.

Proof. See the Appendix. O

Remark 3. The control algorithm (@) is able to manage
also repetitive disturbances dy(x) : R*" — R?*" and multiplica-
tive uncertainties ¥ € R. The system (@) can be rewritten
as Xj = yf(x;) +wg(xj)uj+d(xj) +vj, thus any repetitive
disturbance dq(x) can be included in the drift field f(x) [31].

Finally, it is worth noting that assumptions [AT] and [A2] can
be relaxed at the cost of more complex notation. Assumption
[AT]requires a study of the null space of the decoupling matrix.
Results of Theorem |[l| can also be obtained considering in
assumption that r; #rj, when i# j, i,j=1,---,n,. This
is beyond the scope of this work and assumption [A3] will be
analyzed in future work.

B. On the Inertial Coupling Property of Compliant Arms

In Sec.[[II-A] we proved the convergence of (5) based on the
assumption [A2] which depends on the chosen output function.
In this section, we study how different choices of the desired
output function (3] affect the validity of the assumption In
particular, we propose dynamic conditions that ensure a fixed
relative degree based on the inertial coupling of robot. To keep
the notation simple, we will omit the iteration dependency.

Proposition 1. Let us consider a system in the form (I)-(2)-
(@), under assumptions Let h(q,q) € R™ be the output
Sfunction, which includes the positions and velocities of the
Jjoints, then the relative degree r is r =1 iff
dh(q,q
rank{E} = rank{éqfq)Ml (q)S} =ny,Vgq,q €R", (11)
q
where E(x) € R™*™ s the decoupling matrix.
Conversely, if the output function does not include the
velocities, the relative degree r is r =2 iff
dLrh(q,q
oLiha.4) q)M1<q>S} — 1,99, €R".
q

rank {E} = rank {
(12)

Proof. See the Appendix. O

It is worth noting that (IT)) and (I2)) depend on the inertial
coupling of the system and on the chosen trajectory (3).

Remark 4. Recalling system (1)-@)-@), we highlight that
(12), is a more general result of the SIC definition [28]. In
[128)], the output function was the active joint positions vector,
namely collocated variables. Conversely, (12)) can be applied
to any output choice. In the case of y = Saq with Sy =S,
becomes rank{SaM’l(q)S} =n, [28]. Note that no
assumption is required on the number of the passive joints.

In this work, two output functions are analyzed. Firstly, we
focus on the absolute angle of the tip of the robot, i.e.,

y:h(X):]anq llxn:[lf",l]ERlX". (13)

Secondly, we use the Cartesian Planar position of the robot
tip. The chosen output function for planar operations is

~ |yx(q) 2 Jyx(q@) =X L 005(25:141/')
y= €R " e

yy(q) yy(q) = Xity le;sin(X_ q5)

where [, € R,i=1,---,n is the centre of mass distance of

the i—th link. Instead, if the robot operates in a tridimensional
workspace, we can use the direct kinematics map, i.e.,

(14)

y=[x(q), yv(q), yz(q)]" €R>. (15)

Note that the output functions (13)),(T4), and (I3) depend on
the whole joints’ position and in no way the output is limited
to include only the position of actuated joints.

C. Automatic Gains Selection to Guarantee the Convergence

In this section, we propose two automatic procedures to
design the learning gain I';(r) € R™*" to fulfill (7).

Corollary 2. Under the same assumptions of Proposition
let h(q) € R™ be the output function, and let be true. If
we choose the leaning gain T'j(t) € R™*"™ such as

Li(t)=¢€E ' (q;,¢,)Y," e €[0,1), Vt €[0,2],¥j, (16)

where E(x) € R"*" js the decoupling matrix, and Y, € R"*"
is the control gain, then the condition (7)) in Theorem || holds.

Proof. See the Appendix. O
Applying Corollary 2] to the output (I3), (I6) becomes

Fj(t) = 8/ (11><nM_1<q]')S) .

From a practical point of view, a trivial case in which
is not fulfilled is Y.} , viq; = /2 where v; e Rji =2,--- ,n.
Hence, the angle between the tip of the robot and the first
link position ¢ is equal to 7/2. Corollary [2] is an automatic
procedure, which allows a precise design of the learning
gains I j(t) in . However, it presents two limitations. First,
it requires the full knowledge of the inertia matrix of the
robot. Second, if the relative degree changes, (T6) is divergent.
Therefore, we propose an alternative gain selection method.

a7

Corollary 3. Under the same assumptions of Proposition
and let h(x) € R™ be the output function, and let ® be



a finite constant value such as ® > max, ||YE(x(¢))||. If we
choose a time and iteration constant learning gain I" such as
1a
Tii=sgn{ Y Eij}/0, i=1,-ny, (18)
j=1
where T';; is the i—th diagonal element of T € R™*™, and

E(x) € R™*"™ s the decoupling matrix; then the condition
in Theorem [I] holds.

Proof. See the Appendix. O

The iterative controller (3) with learning gain requires
the knowledge of the robot’s inertial model. Conversely, (I8)
requires the boundedness of the inertia matrix and some
information on the sign of decoupling matrix’s elements to
guarantee the convergence of ().

D. Method Applicability

We here study the applicability of the iterative method. As
depicted by Fig.[2} (3)) is purely feedforward, and it cannot be
applied to any unstable system. Hence, we discuss about the
open-loop stability of a generic underactuated compliant arm.

Recalling (I) and (@), the stability depends on the drift
vector. Thus, it is strictly connected to the stiffness [15],
[32]], [41]]. Let us consider any equilibrium point such as

= [qT,O]TXn]T, we linearize (I around the pair (X,%), i.e.,

& O I =~ Onxn, ~

@ (k)| mt@p] )
(19)

where ¥ £ x — X, and @ = u — u. Consider (19), if
M~1(q)(dG(q)/dq+K) ’q > 0, then the overall matrix is Hur-
witz and Lyapunov indirect Theorem implies that (2)) is asymp-
totically stable in (%,%). Since M~'(gq) (8G(q)/¢9q+K)|a
depends on the dynamic parameters, e.g., stiffness, design
choices can lead to the asymptotic stability of the equilibrium
or around trajectories.

Conversely, a feedback controller could stabilize the closed-
loop system [15]], [42] at the cost of a stiffening of the robot
behavior [32], and of the necessity of a novel convergence
condition. This problem is out of the scope of this paper.

IV. VALIDATION

In this section, we validate the effectiveness of the pro-
posed method on compliant arms through simulations and
experiments. First, the proposed technique is compared with
SoA controllers. Then, we extensively validate the proposed
approach on several different robotic structures in different
conditions. In the following, we denote with R the active
revolute joints and with R the passive ones.

A. Simulation and Experimental Setup

We simulate the five systems, namely RR in Fig. [3(a)
R9R in Fig. [3(b)l RRRRRR in Fig. R2R in Fig. [3(d)
RRRR in Fig.[3(e), respectively. To simulate the dynamics, we
employ the Robotics System Toolbox by MATLAB,
and the dynamic parameters are reported in Tab. [l where

J, m, a, l., k, and d are the inertia, mass, length, center of
mass distance, spring, and damper of each link, respectively.
The joint springs and dampers are assumed linear.

We perform simulations to compare ILC with the SoA on
the RR in Sec. We simulate the ROR in Sec.
and RRRRRR in Sec. Simulations, which are carried out
with the RR, R2R, and RRRR system, are compared with the
experimental results in Sec Sec. and Sec. It
is worth noting that M~!(q) (8G(q)/aq+K)|? = 0,vg e R",
hence the equilibrium of the system is asymptotically stable,
and the controller (3) is applicable.

In the experiments, as elastic actuators, we employ a gb-
Move Advanced, which are variable stiffness actuators [43]].
This actuator is based on the agonistic-antagonistic principle,
for which two motors connect the output shaft via a nonlin-
ear elastic mechanism. The actuators are equipped with an
AS5045 12 bit magnetic encoder.

The elastic torque 7. and the nonlinear stiffness function &
of the actuator are 7. =23 cosh(a6;) sinh(a(g; — 6.)) and 6 =
20 cosh(a6;) cosh(o(g; — 6,)), where o = 6.7328rad !, B =
0.0222Nm, and ¢; is the Lagrangian variable of the i—th active
link i =1,--- ,n,. This actuator can be controlled through two
parameters 6 and 6.. 6 tunes the desired stiffness profile and
will be set constant. Note that this leads to a nonlinear stiffness
profile, differently from the stiffness matrix K in (T). 6. is the
motor equilibrium position, and, assuming a negligible motor
dynamics, it becomes the control input 7 in (I)) by multiplying
it for the joint stiffness.

To implement a passive joint, we employ a gbMove Ad-
vanced actuator, where 6; is set constant, while 0. is set null.
Thanks to this practical method, we have a passive joint with
a torsional spring and a position encoder sensor.

B. Simulation and Experimental Description

We first compare the proposed method with SoA controllers
in simulation on the SISO RR system in Fig Then, the
proposed technique is validated through several simulations
and experiments on systems depicted in Fig[3] varying payload
masses, stiffness profiles, nonrepetitive disturbances, trajecto-
ries, and output functions. For the SISO systems, namely

TABLE I
DYNAMIC MODEL PARAMETERS.
RR
Link | mlkg] | L[m] | a[m] Jlkgm?] | k[Mm] | 4[Nms)
T 055 0.085 | 0.089 0.002 3,5.04 3
2 [0.45,0.15 | 0.085 | 0.089 | 0.002,9e—4 | 3,504 | 03
R9R
Link | mlkg] | L[m] | a[m] | Jikgm?] | k[¥m] | 4[Nms)
1,9 | 0.085 [ 0.085 | 0.089 | 7e—4 | 5.04 3
10 0.02 [ 0.085 | 0.089 | 6e—4 | 504 03
R2R
Link | mlkg] | l[m] | alm] | Jkgm?] | k[M2] | g[Nms]
12 | 025 | 0.085 [ 0.089 | 0.00I | 3,504 | 03
3| 020 [0.085 [ 0089 | 0.00I | 3,504 | 03
RRRR, and RRRRRR
Link | mlkg] | L[m] | a[m] | Jikgm?] | k[¥m] | 4[Nms)
1,6 | 055 | 0085 [ 0089 | 0001 | 504 | 03

RR, ROR, and R2R, the chosen output function is (T3) and
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Fig. 3. Pictures of the compliant robots employed as simulation and experimental testbed. (a), (b), (d) are SISO systems, while (c) and (e) are MIMO. In (b)
and (c) are reported the simulated models. (a), (d), and (e) depict the 2 DOFs, 3 DOFs, and 4 DOFs arm employed in the experiments, respectively.

as reference trajectory yq we use two trajectories. First, a
sinusoidal signal lasting for # = 6s, i.e.,

va(t) =m/8cos(t+m)+m/8 . (20)

Second, a minimum jerk signal that starts from y, and reaches
V= % in ff = 10s or 1s, i.e., defining # £ t/t;, one has

yalt) = yi+ (vt — ys) (10:3 - 15tf‘+6z§) .
Conversely, for the MIMO systems, namely RRRRRR and
RRRR, we choose ([4) and (T3) performing a minimum
jerk trajectory (2I). Additionally, with the RRRR system, we
perform also a planar circumference, i.e., defining 1 £ 27— T

yay (t) = yx(0) +-recos(t),  yay (1) = yy(0) +resin(r), (22)

where r. is the radius, # = r/tf with # final time, and
y(0) = y(15) = [yx(0), yy(0)]" is the Cartesian initial and final
position of the tip of the robot.

The dynamic model, described in Sec.[IV-A] is used both for
simulating the system and for tuning the learning gain I';(r)
of the controller (B in the experimental trials.

To fulfill the convergence condition (7) in Theorem [T} we
employ one of the two gain selection methods proposed in
Sec. [[lI-C} Gain Selection Procedure 1 (namely, GSP1), i..,
(T6) in Corollary 2} or Gain Selection Procedure 2 (namely,
GSP2), i.e., (I8) in Corollary [3 In (I6), we set the parameter
€ as € =0.9. The value of the control gains Y;,i=0,---,r
is chosen depending on the test: Tab. lists the control
parameters Yo, I'j, Y\, used in each simulation and experiment.

The initial guess up € R™ is the constant input able
to maintain the robot in the starting configuration X(0) =
[37(0), 01x,] " €R2, ., solving Sug(r) = G(g(0)) +K7g(0).
It is worth noting that the nonrepetitive disturbances /; in the
experiments are such that /; % 02px1, V).

We utilize the root mean square (RMS) error as a metric to
evaluate the controller tracking performance. As a result, for
MIMO systems, the error is calculated as the RMS error of
each output function Euclidean norm.

Note that the controller (5) requires up to the r—th order
differentiation of the output signal. Thanks to the feedforward
nature of the controller, the estimation of the output derivatives
is performed off-line using the the numerical gradient.

Finally, we highlight that the main discrepancies between
simulations and experiments are due to the inaccurate dynamic
model, output derivative estimate, and nonlinear joint stiffness.

TABLE II
SIMULATIONS AND EXPERIMENTS CONTROL GAINS
SISO: [D(), v, 1)2] , MIMO: [‘U()Ina, 1.)]Ina s ‘Uzlna}

RR Sim. Sin. Min. Jerk 10s | Min. Jerk 1s
Heavy, Light [250,10,1] [250,10,1] [250,10,1]
Exp. Sin. Min. Jerk 10s | Min. Jerk 1s
Heavy [200,0.5,0.5] | [250,0.5,0.5] [250,0.5,0.5]
Light [150,5,0.3] [250,5,0.3] [250,5,0.3]
ROR Sim. Sin. Min. Jerk
6, =0.523 [1,0.1,0.01] [1,0.1,0.01]
RRRRRR Sim. Swing
6, =0.523 [20,1,0.1]
R2R Sim. Sin. Min. Jerk 10s
6, = 0.523,0.349 [80,1,1] [80,1,1]
Exp. Sin. Min. Jerk 10s
6, = 0.523,0.349 [150,1,1] [150,1,1]
RRRR Sim. Circ. Swing
6, = 0.523,0.349 [50,5,1] [50,5,1]
Exp. Circ. Swing
6, = 0.523,0.349 [20,1,0.1] [20,1,0.1]

C. Simulation Results: SoA and ILC Comparison on RR

This section compares the proposed method with SoA
controllers simulating the RR system described in Tab. [I, with
S=]1, O]T, n=2, and n, = 1. More details about the RR
system can be found in [33].

We implement two baseline controllers: a Proportional-
Derivative (PD) [15] and a Computed Torque (CT) [44]. The
former is model-free, and its control law can be written as

(1) = Ky (Va(1) = ¥(1)) + Kp (va(1) = (1)) ,  (23)

where Ky = 1 and Kp = 10. The CT method is model-based.
Recalling (I), the CT control law can is

T(t) = (Ml,l (q) —M12(9)M5, My (q)) a(r)
+N1(9,4) — My 2(9)M53N2(4,G),

where i € R is a PD action such as (23). These two methods

are compared with the proposed ILC, whose learning gain is
designed via GSPI1. The starting configuration is Xy = O4x1,
thus the ILC initial guess up € R is equal to zero.

We apply all controllers to the minimum jerk reference (21I).
We test both the case of perfect knowledge of the model
parameters (Tabll), and the case of an inaccurate model. The
latter is obtained introducing a multiplicative uncertainty on
the masses and inertias in Tab ie., mi=09m;,J;=009J;,i=
1,2. This case will be referred to as Perturbed and, we do not
test the PD Perturbed case because it is completely model-free.

Fig. @] compares results with all controllers in all scenarios.
Fig. A(a)} reports the error evolution, while Fig. [(b)] shows
the final output evolution.

(24)
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Fig. 4. RR: simulation results for the minimum jerk trajectory. Different control actions have been tested by varying the parameters.

D. Simulation Results: ROR

We here report the results of the ROR system, whose
dynamic parameters are listed in Tab. [I, with S=[1,0],,]"
n =10, and n, = 1. This simulation aims at testing the per-
formance of the proposed method in presence of nine passive
joints. Furthermore, we compare the performance of GSP1
and GSP2. This is done both with and without disturbances.
Indeed, we also inject Gaussian noise with zero mean and
standard deviation 1073 and 10~ in the position and velocities
measurements, respectively. The output function is (I3)), the
starting configuration is X¥(0) = Oy thus, the initial guess
up € R is equal to zero.

Fig. 5] reports the results for and (21). Fig. and

show the error evolution, while Fig. [5(b)] and [5(d)| report
the final output evolution.

bl

E. Simulation Results: RRRRRR

We here report the results of the RRRRRR system, whose dy-
namic parameters are listed in Tab. [ The selection matrix S €
R"™" with n =6 and n, = 3, is a null matrix except for S; | =
832 = S53 = 1. This simulation validates the performance
of (B) dealing with MIMO systems moving in the Cartesian
space, i.e., the output function is (I3). The robot swings from
the initial Cartesian position y, = y(0) = [0, 0.4, —0.3] 'm to
the final position yr = y(tr) = [—0.43, 0.03, 0.03] " m. Then, it
swings back to the initial one, i.e., y(2¢) = y(0). The desired
trajectory is composed of two minimum jerk signals
lasting #; = 5s each, so the task lasts 10s in total. The starting
configuration is X(0) = 012« thus, the initial guess up = 03 .
The learning gain is designed via GSP2, i.e., (I8).

Fig. [6] reports the results. Fig. [6(a)] reports the error evolu-
tion. Fig. [6(b)| shows the final output evolution in the Cartesian
space, formally (I3)). Fig. visualizes the robot motion in
the initial, middle, and final configuration. Finally Fig. [6(d)|
depicts the learned control action.

F. Simulation and Experimental Results: RR

This experiment aims at validating the proposed approach
varying the mass of the second link of the RR system:
Light (m; = 0.15kg), and Heavy payload configuration (m; =
0.55kg), as reported in Tab. [l with § = [1, O]T, n =2, and
n, = 1. A comparison between simulation and experiment
is also presented. The output function is with starting
configuration X¥(0) = O4x;. Consequently, the initial guess
up € R is equal to zero. The learning gain is designed using
GSP1 using the nominal model in Tabl]

In the Heavy Payload scenario, we set 6; = 0.523rad for
both joints, that leads to a joint stiffness equal to o =

5.04Nm/rad in case of zero deflection. Analogously, in the
Light Payload scenario, we set 65 = 0.349rad leading to
o = 1.57Nm/rad in case of zero deflection. Additionally, both
scenarios are performed using three trajectories: the sinusoidal
and the minimum jerk with #r = 10s and # = 1s.
Fig. [ [8] and [9] show the results. Fig. [7(a)l and O(a)|
reports the error. Fig. [7(b)} [8(b)] and P(b)]show the final output
and Fig. and depicts the final control action.
Finally, Fig. [@@ and [9(d)| show the final joints evolution.
10

Finally, Fig. shows a photo-sequence of the RR, Heavy
Payload, executing (2T) with 7 = 10s (see Video extension).

G. Simulation and Experimental Results: R2R

In this experiment, we employ the R2R arm to validate
the effectiveness of the method in presence of different joint
stiffness, repetitive and nonrepetitive disturbances. For each
scenario, the task is to follow the desired trajectories @]) and
(21) with the output function (I3). The starting configuration
is X(0) = Ogx 1, which leads to ug = 0 € R. The learning gain is
chosen as in GSP1, i.e., Corollary 2| using the nominal model
in Tab. [l with S=[1,0,0]", n=3, and n, = 1.

We test two stiffness configurations: Softer case obtained
with 6; = 0.349rad, which leads to o = 1.57Nm/rad in case
of zero deflection, and Stiffer case, with 65 = 0.523rad and
o = 5.04Nm/rad in case of zero deflection. In the disturbed
scenario, we attach a pendulum with a mass equal to 0.1kg to
the tip of the robot (see Fig. [[T). The mass is free to oscillate
during the robot motion. Its dynamics is not modeled in (T,
leading to a repetitive disturbance [45]]. This experiment is
called Pendulum, and it is a direct application of Remark
[l Additionally, we also test the iterative algorithm in the
presence of nonrepetitive disturbances. In particular, every 5
iterations, the user hits the robot. These experiments reproduce
the presence of the disturbances v;(r). We test this case in
the Softer and Stiffer scenarios and follow the two desired
trajectories, minimum jerk and sinusoidal, respectively. Fig.[12]
and [I3] compare the simulation and the experimental results
for (20) and (ZI)), respectively. Fig. [[2(a)] and [T3(a)] report
the error, while Fig. and show the final output.
Fig. and depict the leaned control action. Fig.

depicts a photo-sequence of the Pendulum scenario executing
(20) at the last iteration (see Video extension).

H. Simulation and Experimental Results: RRRR

This experiment aims at validating the proposed approach
with a MIMO system, varying also the passive joint stiffness.
We here report the results of the RRRR robot, whose dynamic
parameters are listed in Tab. [Il The selection matrix S € R"*"a
with n =4 and n, = 2, is a null matrix except for S| =953, =
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Fig. 10. RR: photo-sequence of the final 1) with # = 10s, heavy payload.

Fig. 11. R2R: photo-sequence of the final 20), Pendulum.

1. The output function is (]E[), i.e., horizontal plane. We test
two planar trajectories: Circumference and Planar Swing. Both
tasks are performed in two configurations: Soft and Stiff. In
particular, we vary the 6, of the passive joints, which is set as
0; = 0.349rad and 6; = 0.523rad respectively. Conversely, the
active ones have a fixed preset equal to 6; = 0.698rad, leading
to 0 = 13.44Nm/rad in case of zero deflection.

1) Circumference: The desired trajectory is a circumfer-
ence @) with r. = 50mm and tf = 5s. The chosen initial
pose is x(0) = [0, 0, m/3, 01,s] ", hence, the initial guess is
uo/Ki1 = [0, 7t/3]T. We design the learning gain via GSP2.

Fig. [T4] reports a photo-sequence of the Circumference tra-
jectory final execution (see Video extension). Fig. [I5]compares
the results in both configurations. Fig. [[5(a)] reports the error
evolution, while Fig. shows the final output evolution.
Fig. [[5(b)] depicts the learned control action.

2) Planar Swing: The robot swings from the initial Carte-
sian position ys = y(0) = [—0.27, 0.30] 'm to the final po-
sition y¢ = y(fr) = [0.15, 0.38] 'm. Then, it swings back to
the initial one, i.e., y(2#) = y(0). The desired trajectory is
composed of two minimum jerk signals (1), lasting # =
5s each, so the task lasts 10s in total. The initial pose
is X(0) = [1/6, 0, m/6, 01s]", hence, the initial guess is
uo/Ki1 =[m/6, 7/6]". We design the learning gain via GSP2.

Fig. [T6] shows a photo-sequence of the Circumference
trajectory execution at the last iteration (see Video extension).
Fig. [T7] compares the results in both configurations. Fig.
reports the error evolution, while Fig. shows the final
output evolution. Fig. [[7(b)| depicts the leaned control action.

V. DISCUSSION

In this section, we discuss the results of Sec. We em-
ployed several different robotic structures varying the number
of passive elements, payloads, desired trajectories, stiffness
profiles, and disturbances.

The applicability of the iterative method is limited to intrin-
sically stable systems and the controller (3) cannot compensate
for nonrepetitive disturbances in the time domain. This is true
for all the pure feedforward approach. Conversely, Taking
inspiration from, e.g., [23[], [24], [42], it would be possible
to include also a feedback loop in the control law. However,
in this case, a different convergence condition is required.

We compared our iterative method with baseline controllers,
namely PD and CT, Fig. ] Since the initial guess is such that
the system does not move, Fig. @ shows that ILC has the
worst performance at the first iterations.Refining the input,
the ILC law achieves performance (RMS ~10~*rad) that are
comparable with the one of CT with perfect knowledge of

the model (RMS ~10~3rad), Fig. In case of inaccurate
model, the CT performance are drastically reduced. Con-
versely, the ILC continues to achieve analogous performance
at the cost of a slower learning rate. PD shows always the
worst performance.

The baseline controllers are feedback approaches, differ-
ently from the proposed ILC, which is purely feedforward.
Thus, the performance of the CT and PD are obtained dras-
tically altering the robot compliance. Additionally, classical
model-based feedforward inverse dynamic controllers cannot
be applied for highly underactuated systems, because they
require information about the x4, which cannot be obtained
uniquely from yq.

Regarding the ILC results, we note that, even though the
model of the system is not accurate, the method improve
the tracking performance within the iteration domain. In
the simulations, the match between the model and the
controlled system is perfect, and numerical issues in the
derivatives estimation are not present, leading to a smooth
error convergence. Conversely, the experiments present
model and measurement inaccuracies. However, the obtained
tracking error at the last iteration is comparable with
the simulations at the cost of a greater number of trials,

BIBEIS@II50) and |T7T5L [[70)

Underactuated compliant arms usually present oscillatory
movements. However, the method we proposed is able to
achieve satisfying tracking performance at the last iteration
Fig BOIB@I6®ITOIBOIP®IT2ZMIT3®) [[5(c)} and [T7(c)]
The only exception is (21I) with # = Is and heavy payload,
depicted in Fig. 0] In this case the comparison between sim-
ulation and experiments empathizes that actuation saturation
and errors in the derivatives prevent the oscillations removal,
thus the performance are reduced.

The controller (3) can execute the task despite the pres-
ence of passive joints, unmodeled dynamics and disturbances
while guaranteeing good tracking performances also varying
payloads, stiffness profiles, and output functions. This happens
also in the case of MIMO systems and systems with a number
of unactuated joints that is even greater than the actuated ones.
Fig. [7(d)] B(d)] and P(d)] show the evolution of the joints in
the RR experiments, proving that the unactuated joints present
a not negligible motion. An analogous behavior occurs for all
systems, but it is not reported here for the sake of space.

Sec. shows that the error convergence is (mostly)
affected by the elastic behavior of the robot: softer behavior
leads to slower learning processes Fig. Indeed,
even though the final RMS error value is the same in both
cases, the Stiffer robot reaches it about 5 iterations before the
Softer one. Conversely, in Sec. the absence of gravity
lead to the same performances despite the variation of the
stiffness profile, Fig. [[5(a)] and [T7(a)]

In Sec. [[V-D} we point out that the convergence achieved
with GSP1, i.e., (I6), is faster than the one of GSP2, i.e., (T8),
at the cost of a more accurate description of the model. Indeed,
if the robot model is available, the learning process can be
expedited designing a learning gain such as in (T6)-(T7), and
potentially using a model-based initial guess uy. Conversely, if
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Fig. 12. R2R: simulation and experimental results for the sinusoidal trajectory. We vary the joints stiffness, we test the method in the case of disturbances.
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Fig. 13. R2R: simulation and experimental results for the minimum jerk trajectory. We vary the joints stiffness, we test the method in the case of disturbances.

Fig. 14. RRRR: photo-sequence of the final Circumference task, Softer case.

the inertia matrix is not known, after the first iteration where
the robot does not move, one checks the learning gain sign
and properly select it in (I8).

Additionally, according to Theorem [T} the presence of
bounded nonrepetitive uncertainties in the output function
leads to a bounded error: 0.01rad, which is achieved at iteration
20, Fig. [5(a)] and Moreover, the iterative framework
can manage the presence of external disturbances of different
types, namely Dist Ext and Pendulum scenario in Sec. [V-G|
The former represents a nonrepetitive external disturbance on
the robot, while the latter is an unmodeled dynamic effect.
Indeed, Fig. [I2}{13] show that the iterative process learns the
unmodeled dynamics of the mass and rejects the external
disturbance reaching good tracking performances.

Finally, it is worth remarking that Proposition [T holds true,
then the relative degree r is equal to r =2, so the convergence
is guaranteed thanks to the choice of the gains.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a control framework to precisely
follow a trajectory with underactuated compliant arms present-
ing any combination of active and passive elastic joints with no
limitation on their number. For this scope, we designed a pure
feedforward control framework based on the ILC approach.
The convergence of the method is proved also in the presence
of bounded disturbances. The applicability of the approach is
guaranteed via inertial conditions on the system and output
functions, and via design choices leading to stable behavior.
Additionally, we proposed two automatic procedures to select
the learning gains. Finally, we compared the method with SoA
control algorithms and we extensively validate its effectiveness
varying trajectories, the number of passive and active joints,
stiffness, robots, output functions, disturbances, and payloads.

Future extensions of this work will apply the iterative
control to a soft continuum robot [22].

APPENDIX

Proof of Theorem [I| To keep the notation simple, we will
omit the time dependence. Given (3) and (6), one has
ug —tjpr = (b, = j0E(xj)) (g —uj) = T;P(x), xa)
- ) (25)
+I;T, (E(Xj) —E(xd))ud+Fj ZYSW]- .
s=0
Given the definitions Su; L g — uj and Ox; 2 x4 —Xj, we can
write the following inequality

3] < 1~ 15,00 18] 5] [06550)|
+ [T AT E (x)) = E(xa)]| | [[uall + | [T | o
(26)

where by > (r+ 1)max{||Xo||bw, -+, ||X:||bwc} > 0. Simi-
larly, recalling assumptions [A2} [A3] and (6), we can compute
a finite positive constant & such that

@ 50)]| = || X ¥ (Eha) — Lyh(y) |
=0 (27)
< Y I [[3n ]| <®|[ox|
s=0

where @ > (r+ 1) max{||[YoDo|,- -, ||, D,||} > 0.
Let (7) be true, using and recalling assumption [A3] we
can derive the following inequality

8l < p 13,1+ [0S0 Ol +8) (|3 + )
(28)

Defining pt £ sup, {||T;|| (||X,[| 71 ||ua]| +P) }, we obtain

[|8ujsr || < p |80 |+ |8, ][+ |[T)][ w29
Given assumption [A3] and the system (2)), one has
!
ol <t [ (ot aollwa@ID I35 @l 5,

+ [0 ()| || |8u(2) || + budz.
Applying the Gronwall’s Lemma to (30) leads to

t
[835]] < e+ [ (e ||8usa)] | +b) 29z, )

where, ¢ £ sup, {fo+go||ual|} and ¢ £ sup, {||g(x;)||}.
Substituting (31) into (29) leads to

[t < 3+ bie™ + || B

t 32
+,u/0 (c1||8u;(2)|| +by) eI dz . G2
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Fig. 15. RRRR: experimental results for the planar Circumference. Different conditions have been tested by varying the stiffness of the passive joints.

Fig. 16. RRRR: photo-sequence of the final Swing task, Softer case.
Computing the A —norm of (32) leads to

18] < o |18 +-sbrsup {4 b+ 1] B

+Sup{/0te(cz—/l)(l—z)dz}” (Cl H5”f||/l —|—bv) .
t

Solving the integral in (33) and defining b, L ub +
[T ||, B + mby (1 —e272)) /(4 — ¢3) lead to

per (1—eles
Sujnil[y < | p+—F——=

(33)

5 ) ||8uj||, +bj. (34
Defining (A) £ (1 —el2=Ai) /(A —¢2), we compact (34) as
8] [, < (p+uC @) 13wl +B = 15w, 5

For hypotheses p < 1, then Ve, 34 large enough such
that p < 1. Hence, defining b = max;b;, and substituting the
previous j trials, we have

_ —1—p/!
H(SquHA§p1\|5uo||,l+bl_7,. (35)
Then, when the index j approaches +co, we have
i ; <b/(1—p)=b,.
ngwHSMﬁQ\A_b/(l p) £ by (36)
This proves (B).
Recalling (31)) and computing its A-norm, we obtain
[18xil], < b (er[[oui] [, +6) EA) . (3T)
Computing the limit and recalling (36), we have
Jim [[8x|], <bit(ciba+b) ER) 2by. (38)

This proves ().

To prove (T0), we start by noting that if (7)) is satisfied, then
I'; is full rank. This can be easily proven by contradiction. Let
us suppose that (7) is satisfied and I'; singular. This implies
that the spectral radius of I,, —I'j(¢)Y,E(x;) is (greater or)
equal to 1. Recalling that the spectral radius of a matrix is
always lesser or equal to any natural norm of the same matrix
(see, e.g., Chap. 10 of ), we have that this contradicts the
validity of (7), which is absurd. Inverting I'; in (3) and recall-
ing (AT), we have e, :F;I (uj+1 - uj) = 171 (5uj+1 - 5uj).
Computing its A-norm, we can write

eIl = [0, 8useal [, + 118wl ) - 39

We define by £ max j HF;I ’ ‘ 5+ Then, computing the limit of
(39) and recalling (36), we have

lim ||"e;||, <2byby £ be .

i e,
This proves (I0), and it concludes the proof of Theorem[T] [J

Proof of Corollary [1} 1f 1; =0, v;(r) =0, and w;(r) = 0, then
b in (36) is equal to 0, i.e., perfect convergence in (8). Then, it
comes that (38) and @0) are 0. This concludes the proof. [

Proof of Proposition [I| Differentiating h(q,q) € R leads to

(40)

._0dh(g,q) . dh(¢.,q). . .
=g It o, G=Lrh(q,9)+E(q)u. (41)
Directly substituting (@) in @I) yields to
. 9h(q,q) . Ih(g,q), :
Leh = - M~ (g)N
rh(q,q) 2a 9 " aq (a)N(q.4) , “2)

E(q,9) = (9h(q,:9)/dq) M (9)S ,
which leads to (TT).
Conversely, if y = h(g) € R™ then, E(g,4) in has not
maximum rank. Differentiating the output function leads to
ath(CIa CI) ath(‘L‘D 2
V= g+ ——G=Lh(q,9)+E(q,9)u,
dq dq ! ( (
E(g,4) = (9Lsh(g,9)/dq) M~ (9)S ,
L}h(q.q) = (ILsh(q.4)/9q) 4 — (9Lsh(g,4)/94) N(,4) )
O

This proof is completed.

Proof of Corollary 2| The proof naturally comes from Propo-
sition [I] and substituting (I6) into (7). O

Proof of Corollary 3| Let be p € [1,n,] the norm—1 index.
Directly substituting (T8) into the condition (7), one has

Ep’i(x) <lizn E na
o |~ o

that £/ is small by hypotheses, and (7) holds true.

Na

1a
Xi |1 —Fp,iY,p7pEp,,~(x)| = Zi 1—
= i=

<1,
(44)

O
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